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Abstract In this paper, we introduce two kinds of iterative algorithms for the problem
of finding zeros of maximal monotone operators. Weak and strong convergence theorems
are established in a real Hilbert space. As applications, we consider a problem of finding a
minimizer of a convex function.
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1 Introduction

Throughout this paper, we assume that H is a real Hilbert space, whose inner product and
norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let T be a set-valued mapping.

(a) The set D(T ) defined by

D(T ) = {u ∈ H : T (u) �= ∅}
is called the effective domain of T ;
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(b) The set R(T ) defined by

R(T ) =
⋃

u∈H

T (u)

is called the range of T ;
(c) The set G(T ) defined by

G(T ) = {(u, v) ∈ H × H : u ∈ D(T ), v ∈ R(T )}
is said to be the graph of T .

Recall that a mapping T is said to be monotone if

〈u − v, x − y〉 ≥ 0, ∀(u, x), (v, y) ∈ G(T ).

T is said to be maximal monotone if it is not properly contained in any other monotone
operator. The class of monotone mappings is one of the most important classes of mappings
among nonlinear mappings. Within the past several decades, many authors have been devot-
ing to the studies on the existence and convergence of zero points for maximal monotone
mappings, see [1–26] and the references therein.

In this paper, we consider the problem of finding zeros of maximal monotone operators
by the proximal point algorithm. To be more precise, we introduce two kinds of iterative
schemes. Weak and strong convergence theorems are established in a real Hilbert space. As
applications, we also consider a problem of finding a minimizer of a convex function in the
Sect. 4.

2 Preliminaries

Let C be a nonempty, closed and convex subset of a Hilbert space H . In this paper, we always
assume that T : C → 2H is a maximal monotone operator. A classical method to solve the
following set-valued equation

0 ∈ T x, (2.1)

is the proximal point algorithm. To be more precise, start with any point x0 ∈ H , and update
xn+1 iteratively conforming to the following recursion

xn ∈ xn+1 + λn T xn+1, n ≥ 0, (2.2)

where {λn} ⊂ [λ,∞), (λ > 0), is a sequence of real numbers. However, as pointed in [10],
the ideal form of the method is often impractical since, in many cases, to solve the problem
(2.2) exactly is either impossible or the same difficult as the original problem (2.1). There-
fore, one of the most interesting and important problems in the theory of maximal monotone
operators is to find an efficient iterative algorithm to compute approximately zeroes of T .

In 1976, Rockafellar [21] gave an inexact variant of the method

x0 ∈ H, xn + en+1 ∈ xn+1 + λnT xn+1, n ≥ 0, (2.3)

where {en} is regarded as an error sequence. This an inexact proximal point algorithm. It was
shown that, if

∞∑

n=0

‖en‖ < ∞,

123



J Glob Optim (2010) 46:75–87 77

then the sequence {xn} defined by ( 2.3) converges weakly to a zero of T provided that
T −1(0) �= ∅. In [11], Güler obtained an example to show that Rockafellar’s proximal point
algorithm (2.3) does not converge strongly, in general.

Recently, many authors studied the problems of modifying Rockafellar’s proximal point
algorithm so that strong convergence is guaranteed. Cho et al. [6] proved the following result.

Theorem CKZ-1 Let H be a real Hilbert space, � a nonempty closed convex subset of H,
and T : � → 2H a maximal monotone operator with T −1(0) �= ∅. Let P� be the metric
projection of H onto �. Suppose that, for any given xn ∈ H, λn > 0 and en ∈ H, there
exists x̄n ∈ � conforming to the following set-valued mapping equation

xn + en ∈ x̄n + λn T x̄n,

where {λn} ⊂ (0,+∞) with λn → ∞ as n → ∞ and
∞∑

n=1

‖en‖2 < ∞.

Let {αn} be a real sequence in [0, 1] such that

(i) αn → 0 as n → ∞,

(ii)
∑∞

n=0 αn = ∞.

For any fixed u ∈ �, define the sequence {xn} iteratively as follows:

xn+1 = αnu + (1 − αn)P�(x̄n − en), n ≥ 0.

Then {xn} converges strongly to a fixed point z of T , where z = limt→∞ Jt u.

They also obtained the following weak convergence theorem.

Theorem CKZ-2 Let H be a real Hilbert space, � a nonempty closed convex subset of H,
and T : � → 2H a maximal monotone operator with T −1(0) �= ∅. Let P� be the metric
projection of H onto �. Suppose that, for any given xn ∈ H, λn > 0 and en ∈ H, there
exists x̄n ∈ � conforming to the following set-valued mapping equation

xn + en ∈ x̄n + λn T x̄n,

where lim inf λn > 0 and
∞∑

n=0

‖en‖2 < ∞.

Let {αn} be a real sequences in [0, 1] with lim supn→∞ αn < 1 and define a sequence {xn}
iteratively as follows:

x0 ∈ �, xn+1 = αn xn + βn PC (x̄n − en), n ≥ 0.

Then the sequence {xn} converges weakly to a zero point x∗ of T .

In this paper, motivated by the research work going on in this direction, we continue to
consider the problem of finding a zero of the maximal monotone operator T . Weak and strong
convergence theorems are established under mild restrictions imposed on the error sequence
{en} comparing with the restriction studied by Cho et al. [6]. The results presented in this
paper improve the corresponding results announced by many others.

In order to prove our main result, we need the following lemmas.
The first Lemma can be derived from Eckstein [10, Lemma 2] immediately.
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Lemma 2.1 Let C be a nonempty, closed and convex subset of a Hilbert space H. For any
given xn ∈ H, λn > 0, and en ∈ H, there exists x̄n ∈ C conforming to the following
set-valued mapping equation (in short, SVME):

xn + en ∈ x̄n + λnT x̄n . (2.4)

Furthermore, for any p ∈ T −1(0), we have

〈xn − x̄n, xn − x̄n + en〉 ≤ 〈xn − p, xn − x̄n + en〉
and

‖x̄n − en − p‖2 ≤ ‖xn − p‖2 − ‖xn − x̄n‖2 + ‖en‖2.

Lemma 2.2 (Liu [16]) Let {an}, {bn} and {cn} be sequences of positive numbers satisfying

an+1 ≤ (1 − tn)an + bn + cn, n ≥ 0,

where {tn} is a sequence in [0, 1]. Assume that the following conditions are satisfied

(i) tn → 0 as n → ∞ and
∑∞

n=0 tn = ∞;

(ii) bn = ◦(tn);

(iii)
∑∞

n=0 cn < ∞.

Then limn→∞ an = 0.

Lemma 2.3 (Tan and Xu [24]) Let {an} and {bn} be sequences of positive numbers satisfying

an+1 ≤ an + bn, n ≥ 0.

If
∑∞

n=0 bn < ∞, then the limit of {an} exists.

Lemma 2.4 (Browder [1]) Let E be a uniformly convex Banach space, C be a nonempty
closed convex subset of E and S : C → C be a non-expansive mapping. Then I − S is
demi-closed at zero.

Lemma 2.5 (Cho et al. [27]) Let E be a uniformly convex Banach space and Br (0) be a
closed ball of E. Then there exists a continuous strictly increasing convex function
g : [0,∞) → [0,∞) with g(0) = 0 such that

‖λx + µy + γ z‖2 ≤ λ‖x‖2 + µ‖y‖2 + γ ‖z‖2 − λµg(‖x − y‖)
for all x, y, z ∈ Br (0) and λ,µ, γ ∈ [0, 1] with λ + µ + γ = 1.

3 Main results

Theorem 3.1 Let H be a real Hilbert space, C a nonempty, closed and convex subset of
H and T : C → 2H a maximal monotone operator with T −1(0) �= ∅. Let PC be a metric
projection from H onto C. For any xn ∈ H and λn > 0, find x̄n ∈ C and en ∈ H conforming
to the SVME (2.4), where {λn} ⊂ (0,∞) with λn → ∞ as n → ∞ and ‖en‖ ≤ ηn‖xn − x̄n‖
with supn≥0 ηn = η < 1. Let {αn}, {βn} and {γn} be real sequences in [0, 1] satisfying the
following control conditions:
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(a) αn + βn + γn = 1;

(b) limn→∞ αn = 0 and
∑∞

n=0 αn = ∞;

(c)
∑∞

n=0 γn < ∞.

Let {xn} be a sequence generated by the following manner:

x0 ∈ H, xn+1 = αnu + βn PC (x̄n − en) + γ PC fn, n ≥ 0, (ϒ)

where u ∈ C is a fixed point and { fn} is a bounded sequence in H. Then the sequence {xn}
generated by (ϒ) converges strongly to a zero point z of T , where z = limt→∞ Jt u, if and
only if en → 0 as n → ∞.

Proof First, show that the necessity. Assume that xn → z as n → ∞, where z ∈ T −1(0). It
follows from (2.4) that

‖x̄n − z‖ ≤ ‖xn − z‖ + ‖en‖
≤ ‖xn − z‖ + ηn‖xn − x̄n‖
≤ (1 + ηn)‖xn − z‖ + ηn‖x̄n − z‖.

This implies that

‖x̄n − z‖ ≤ 1 + ηn

1 − ηn
‖xn − z‖.

It follows that x̄n → z as n → ∞. Note that

‖en‖ ≤ ηn‖xn − x̄n‖ ≤ ηn(‖xn − z‖ + ‖z − x̄n‖).
This shows that en → 0 as n → ∞.

Next, we show the sufficiency. The proof is divided into three steps.
Step 1 Show that {xn} is bounded.

From the assumptions ‖en‖ ≤ ηn‖xn − x̄n‖ and supn≥0 ηn = η < 1, we see

‖en‖ ≤ ‖xn − x̄n‖.
For any p ∈ T −1(0). It follows from Lemma 2.1 that

‖PC (x̄n − en) − p‖2 ≤ ‖x̄n − en − p‖2

≤ ‖xn − p‖2 − ‖xn − x̄n‖2 + ‖en‖2

≤ ‖xn − p‖2.

That is,

‖PC (x̄n − en) − p‖ ≤ ‖xn − p‖. (3.1)

It follows that

‖xn+1 − p‖ = ‖αnu + βn PC (x̄n − en) + γn PC fn − p‖
≤ αn‖u − p‖ + βn‖PC (x̄n − en) − p‖ + γn‖PC fn − p‖
≤ αn‖u − p‖ + βn‖xn − p‖ + γn‖ fn − p‖. (3.2)
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Putting

M = max{‖x0 − p‖, ‖u − p‖, sup
n≥0

‖ fn − p‖},

we show that ‖xn − p‖ ≤ M for all n ≥ 0. It is easy to see that the result holds for n = 0.
Assume that the result holds for some n ≥ 0. Next, we prove that ‖xn+1 − p‖ ≤ M . Indeed,
from (3.2), we see that

‖xn+1 − p‖ ≤ M.

This shows that the sequence {xn} is bounded.
Step 2 Show that lim supn→∞〈u − z, xn+1 − z〉 ≤ 0, where z = limt→∞ Jt u. The
existence of limit Jt u is guaranteed by Lemma 1 of Bruck [2].

Since T is maximal monotone, Tt u ∈ T Jt u and Tλn xn ∈ T Jλn xn , we see

〈u − Jt u, Jλn xn − Jt u〉 = −t〈Tt u, Jt u − Jλn xn〉
= −t〈Tt u − Tλn xn, Jt u − Jλn xn〉 − t〈Tλn xn, Jt u − Jλn xn〉
≤ − t

λn
〈xn − Jλn xn, Jt u − Jλn xn〉.

Since λn → ∞ as n → ∞, for any t > 0, we have

lim sup
n→∞

〈u − Jt u, Jλn xn − Jt u〉 ≤ 0. (3.3)

On the other hand, by the nonexpansivity of Jλn , we obtain

‖Jλn (xn + en) − Jλn xn‖ ≤ ‖(xn + en) − xn‖ = ‖en‖.
From the assumption en → 0 as n → ∞ and (3.3), we arrive at

lim sup
n→∞

〈u − Jt u, Jλn (xn + en) − Jt u〉 ≤ 0. (3.4)

From (2.4), we see that

‖PC (x̄n − en) − Jλn (xn + en)‖ ≤ ‖(x̄n − en) − Jλn (xn + en)‖ ≤ ‖en‖.
That is,

lim
n→∞ ‖PC (x̄n − en) − Jλn (xn + en)‖ = 0. (3.5)

Combining (3.4) with (3.5), we arrive at

lim sup
n→∞

〈u − Jt u, PC (x̄n − en) − Jt u〉 ≤ 0. (3.6)

On the other hand, from the algorithm (ϒ), we see that

xn+1 − PC (x̄n − en) = αn[u − PC (x̄n − en)] + γn[PC fn − PC (x̄n − en)].
It follows from the conditions limn→∞ αn = 0 and

∑∞
n=0 γn < ∞ that

xn+1 − PC (x̄n − en) → 0 as n → ∞,

which combines with (3.6) yields that

lim sup
n→∞

〈u − Jt u, xn+1 − Jt u〉 ≤ 0, ∀t ≥ 0. (3.7)
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From z = limt→∞ Jt u and (3.7), we can obtain that

lim sup
n→∞

〈u − z, xn+1 − z〉 ≤ 0. (3.8)

Step 3 Show that xn → z as n → ∞.
Note that

xn+1 − z = αnu + βn PC (x̄n − en) + γn PC fn − z

= (1 − αn)[PC (x̄n − en) − z] + αn(u − z)

+ γn[PC fn − PC (x̄n − en)] (3.9)

It follows from (3.1) and (3.9) that

‖xn+1 − z‖2

= 〈(1 − αn)[PC (x̄n − en) − z] + αn(u − z) + γn[PC fn − PC (x̄n − en)], xn+1 − z〉
= (1 − αn)〈PC (x̄n − en) − z, xn+1 − z〉 + αn〈u − z, xn+1 − z〉

+ γn〈PC fn − PC (x̄n − en), xn+1 − z〉
≤ (1 − αn)‖PC (x̄n − en) − z‖‖xn+1 − z‖ + αn〈u − z, xn+1 − z〉

+ γn‖PC fn − PC (x̄n − en)‖‖xn+1 − z‖
≤ (1 − αn)‖xn − z‖‖xn+1 − z‖ + αn〈u − z, xn+1 − z〉

+ γn‖ fn − (x̄n − en)‖‖xn+1 − z‖
≤ 1 − αn

2
(‖xn − z‖2 + ‖xn+1 − z‖2) + αn〈u − z, xn+1 − z〉

+ γn‖ fn − (x̄n − en)‖‖xn+1 − z‖
≤ 1 − αn

2
‖xn − z‖2 + 1

2
‖xn+1 − z‖2 + αn〈u − z, xn+1 − z〉 + B

2
γn,

where B is an appropriate constant such that 2B ≥ supn≥0 {‖ fn − (x̄n − en)‖‖xn+1 − z‖}.
This implies that

‖xn+1 − z‖2 ≤ (1 − αn)‖xn − z‖2 + 2αn〈u − z, xn+1 − z〉 + γn B. (3.10)

Putting σn = max{〈u − z, xn+1 − z〉, 0}, we see that σ → 0 as n → ∞. Put an = ‖an − z‖2,
bn = 2αnσn and cn = γn B for each n ≥ 0. It follows from (3.10) that

an+1 ≤ (1 − αn)an + bn + cn .

In view of Lemma 2.2, we obtain that an → 0 as n → ∞. This shows that xn → z as
n → ∞. This completes the proof. ��
Remark 3.2 The maximal monotonicity of T is only used to guarantee the existence of solu-
tions of SVME (2.4) for any give xn ∈ H and λn > 0. If we assume that T : C → 2H is
monotone (need not be maximal) and satisfies the range condition:

D(T ) = C ⊂ ∩r>0 R(I + rT ).

We can see that Theorem 3.1 still holds.

Corollary 3.3 Let H be a real Hilbert space, C a nonempty, closed and convex subset of H
and S : C → C a demi-continuous pseudo-contraction with a fixed point C. Let PC be a
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metric projection from H onto C. For any xn ∈ C and λn > 0, find x̄n ∈ C and en ∈ H such
that

xn + en = (1 + λn)x̄n − λn Sx̄n, (3.11)

where {λn} ⊂ (0,∞) with λn → ∞ as n → ∞ and ‖en‖ ≤ ηn‖xn − x̄n‖ with supn≥0 ηn =
η < 1. Let {αn}, {βn} and {γn} be real sequences in [0, 1] satisfying the following control
conditions:

(a) αn + βn + γn = 1;

(b) limn→∞ αn = 0 and
∑∞

n=0 αn = ∞;

(c)
∑∞

n=0 γn < ∞.

Let {xn} be a sequence generated by the following manner:

x0 ∈ C, xn+1 = αnu + βn PC (x̄n − en) + γ PC fn, n ≥ 0,

where u ∈ C is a fixed point and { fn} is a bounded sequence in H. If the sequence {en}
satisfies the condition en → 0 as n → ∞, then the sequence {xn} converges strongly to a
fixed point z of S, where z = limt→∞[I + t (I − S)]−1u.

Proof Let T = I − S. Then T : C → H is demi-continuous, monotone and satisfies the
range condition:

D(T ) = C ⊂ ∩r>0 R(I + rT ).

For any y ∈ C , define an operator G : C → C by

Gx = t

1 + t
Sx + 1

1 + t
y.

Then G is demi-continuous and strongly pseudo-continuous. By Lan and Wu [15, Theorem
2.2], we see that G has a unique fixed point x ∈ C . That is,

y = x + t (I − S)x .

This implies that y ∈ R(I + tT ) for all t > 0. In particular, for any give xn ∈ C and λn > 0,
there exist x̄n ∈ C and en ∈ H such that

xn + en = x̄n + λnT x̄n, n ≥ 0.

That is,

xn + en = (1 + λn)x̄n − λn Sx̄n .

Next, from the proof of Theorem 3.1, we can obtain the desired conclusion immediately. ��
From Theorem 3.1, we also have the following result immediately.

Corollary 3.4 Let H be a real Hilbert space, C a nonempty, closed and convex subset of
H and T : C → 2H a maximal monotone operator with T −1(0) �= ∅. Let PC be a metric
projection from H onto C. For any xn ∈ H and λn > 0, find x̄n ∈ C and en ∈ H conforming
to the SVME (2.4), where {λn} ⊂ (0,∞) with λn → ∞ as n → ∞ and ‖en‖ ≤ ηn‖xn − x̄n‖
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with supn≥0 ηn = η < 1. Let {αn} be a real sequence in [0, 1] satisfying the following control
conditions:

lim
n→∞ αn = 0 and

∞∑

n=0

αn = ∞.

Let {xn} be a sequence generated by the following manner:

x0 ∈ H, xn+1 = αnu + βn PC (x̄n − en), n ≥ 0,

where u ∈ C is a fixed point. Then the sequence {xn} converges strongly to a zero point z of
T , where z = limt→∞ Jt u, if and only if en → 0 as n → ∞.

Next, we give a Mann-type iterative algorithm and study the weak convergence of the
algorithm.

Theorem 3.5 Let H be a real Hilbert space, C a nonempty, closed and convex subset of
H and T : C → 2H a maximal monotone operator with T −1(0) �= ∅. Let PC be a metric
projection from H onto C. For any xn ∈ C and λn > 0, find x̄n ∈ C and en ∈ H conforming
to the SVME (2.4), where lim inf λn > 0 and ‖en‖ ≤ ηn‖xn − x̄n‖ with supn≥0 ηn = η < 1.
Let {αn}, {βn} and {γn} be real sequences in [0, 1] satisfying the following control conditions:

(a) αn + βn + γn = 1;

(b) lim infn→∞ βn > 0;

(c)
∑∞

n=0 γn < ∞.

Let {xn} be a sequence generated by the following manner:

x0 ∈ C, xn+1 = αn xn + βn PC (x̄n − en) + γ PC fn, n ≥ 0, (ϒϒ)

where { fn} is a bounded sequence in H. Then the sequence {xn} generated by (ϒϒ) converges
weakly to a zero point x∗ of T .

Proof For any p ∈ T −1(0). It follows from Lemma 2.1 that

‖PC (x̄n − en) − p‖2 ≤ ‖x̄n − en − p‖2

≤ ‖xn − p‖2 − ‖xn − x̄n‖2 + ‖en‖2.

From the assumptions ‖en‖ ≤ ηn‖xn − x̄n‖, we see that

‖PC (x̄n − en) − p‖2 ≤ ‖x̄n − en − p‖2

≤ ‖xn − p‖2 − ‖xn − x̄n‖2 + η2
n‖xn − x̄n‖2

≤ ‖xn − p‖2 − (1 − η2)‖xn − x̄n‖2.

It follows from Lemma 2.5 that

‖xn+1 − p‖2 = ‖αn xn + βn PC (x̄n − en) + γn PC fn − p‖2

≤ αn‖xn − p‖2 + βn‖PC (x̄n − en) − p‖2 + γn‖PC fn − p‖2

≤ αn‖xn − p‖2 + βn[‖xn − p‖2 − (1 − η2)‖xn − x̄n‖2] + γn‖ fn − p‖2

≤ ‖xn − p‖2 − βn(1 − η2)‖xn − x̄n‖2 + γn‖ fn − p‖2

≤ ‖xn − p‖2 + γn‖ fn − p‖2. (3.12)
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From Lemma 2.3, we see that the limit of {‖xn − p‖} exists. We, therefore, obtain that the
sequence {xn} is bounded. It follows from (3.12) that

βn(1 − η2)‖xn − x̄n‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + γn‖ fn − p‖2.

From the conditions lim infn→∞ βn > 0 and
∑∞

n=0 γn < ∞, we arrive at

lim
n→∞ ‖xn − x̄n‖ = 0. (3.13)

Note that

‖xn − Jλn xn‖ = ‖xn − x̄n + x̄n − Jλn xn‖
≤ ‖xn − x̄n‖ + ‖x̄n − Jλn xn‖
≤ (1 + ηn)‖xn − x̄n‖.

In view of (3.13), we obtain that

lim
n→∞ ‖xn − Jλn xn‖ = 0. (3.14)

Note that

‖Jλn xn − J1 Jλn xn‖ = ‖T1 Jλn xn‖
≤ inf{‖w‖ : w ∈ T Jλn xn}
≤ ‖Tλn xn‖
= ‖xn − Jλn xn‖

λn
.

In view of the assumption lim inf λn > 0 and (3.14), we see that

lim
n→∞ ‖Jλn xn − J1 Jλn xn‖ = 0.

Let x∗ ∈ C be a weakly subsequential limit of {xn} such that {xni } converges weakly to
x∗ as i → ∞. From (3.14), we see that Jλni

xni also converges weakly to x∗. Since J1 is

nonexpansive, we can obtain that x∗ ∈ F(J1) = T −1(0) by Lemma 2.4. The Opial’s con-
dition (see [18]) guarantees that the sequence {xn} converges weakly to x∗. This completes
the proof. ��
From the proof of Corollary 3.3 and Theorem 3.5, the following result is not hard to derive.

Corollary 3.6 Let H be a real Hilbert space, C a nonempty, closed and convex subset of H
and S : C → C a demi-continuous pseudo-contraction with a fixed point in C. Let PC be a
metric projection from H onto C. For any xn ∈ C and λn > 0, find x̄n ∈ C and en ∈ H

xn + en = (1 + λn)x̄n − λn Sx̄n, n ≥ 0,

where lim inf λn > 0 and ‖en‖ ≤ ηn‖xn − x̄n‖ with supn≥0 ηn = η < 1. Let {αn}, {βn} and
{γn} be real sequences in [0, 1] satisfying the following control conditions:

(a) αn + βn + γn = 1;

(b) lim infn→∞ βn > 0;

(c)
∑∞

n=0 γn < ∞.
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Let {xn} be a sequence generated by the following manner:

x0 ∈ C, xn+1 = αnαn + βn PC (x̄n − en) + γ PC fn, n ≥ 0,

where { fn} is a bounded sequence in H. Then the sequence {xn} converges weakly to a fixed
point x∗ of S.

From Theorem 3.5, we also have the following result immediately.

Corollary 3.7 Let H be a real Hilbert space, C a nonempty, closed and convex subset of
H and T : C → 2H a maximal monotone operator with T −1(0) �= ∅. Let PC be a metric
projection from H onto C. For any xn ∈ C and λn > 0, find x̄n ∈ C and en ∈ H conforming
to the SVME (2.4), where lim inf λn > 0 and ‖en‖ ≤ ηn‖xn − x̄n‖ with supn≥0 ηn = η < 1.
Let {αn} be a real sequences in [0, 1] satisfying lim supn→∞ αn < 1. Let {xn} be a sequence
generated by the following manner:

x0 ∈ C, xn+1 = αn xn + βn PC (x̄n − en), n ≥ 0.

Then the sequence {xn} converges weakly to a zero point x∗ of T .

4 Applications

In this section, as applications of main Theorems 3.1 and 3.5, we consider the problem of
finding a minimizer of a convex function f .

Let H be a Hilbert space and f : H → (−∞,+∞] be a proper convex lower semi-con-
tinuous function. Then the subdifferential ∂ f of f is defined as follows:

∂ f (x) = {y ∈ H : f (z) ≥ f (x) + 〈z − x, y〉, z ∈ H}, ∀x ∈ H.

Theorem 4.1 Let H be a real Hilbert space and f : H → (−∞,+∞] a proper convex
lower semi-continuous function such that ∂ f (0) �= ∅. Let {λn} be a sequence in (0,+∞)

with λn → ∞ as n → ∞ and {en} a sequence in H such that ‖en‖ ≤ ηn‖xn − x̄n‖ with
supn≥0 ηn = η < 1. Let x̄n be the solution of the SVME (2.4) with T replacing by ∂ f . That
is, for any given xn ∈ H,

xn + en ∈ x̄n + λn∂ f (x̄n), ∀n ≥ 0.

Let {αn}, {βn} and {γn} be real sequences in [0, 1] satisfying the following control conditions:

(a) αn + βn + γn = 1;

(b) limn→∞ αn = 0 and
∑∞

n=0 αn = ∞;

(c)
∑∞

n=0 γn < ∞.

Let {xn} be a sequence generated by the following manner:
⎧
⎪⎨

⎪⎩

x0 ∈ H,

x̄n = argminx∈H { f (x) + 1
2λn

‖x − xn − en‖2},
xn+1 = αnu + βn(x̄n − en) + γ fn, n ≥ 0,

where u ∈ H is a fixed point and { fn} is a bounded sequence in H. If the sequence {en}
satisfies the condition en → 0 as n → ∞, then the sequence {xn} converges strongly to a
minimizer of f nearest to u.
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Proof Since f : H → (−∞,+∞] is a proper convex lower semi-continuous function, we
have that the subdifferential ∂ f of f is maximal monotone by Rockafellar [21]. Notice that

x̄n = argminx∈H

{
f (x) + 1

2λn
‖x − xn − en‖2

}

is equivalent to the following

0 ∈ ∂ f (x̄n) + 1

λn
(x̄n − xn − en).

It follows that

xn + en ∈ x̄n + λn∂ f (x̄n), ∀n ≥ 0.

By using Theorem 3.1, we can obtain the desired conclusion immediately. ��
Theorem 4.2 Let H be a real Hilbert space and f : H → (−∞,+∞] a proper convex
lower semi-continuous function such that ∂ f (0) �= ∅. Let {λn} be a sequence in (0,+∞)

with lim infn→∞ λn > 0 and {en} a sequence in H such that ‖en‖ ≤ ηn‖xn − x̄n‖ with
supn≥0 ηn = η < 1. Let x̄n be the solution of the SVME (2.4) with T replacing by ∂ f . That
is, for any given xn ∈ H,

xn + en ∈ x̄n + λn∂ f (x̄n), ∀n ≥ 0.

Let {αn}, {βn} and {γn} be real sequences in [0, 1] satisfying the following control conditions:

(a) αn + βn + γn = 1;

(b) lim infn→∞ βn > 0;

(c)
∑∞

n=0 γn < ∞.

Let {xn} be a sequence generated by the following manner:
⎧
⎪⎪⎨

⎪⎪⎩

x0 ∈ H,

x̄n = argminx∈H

{
f (x) + 1

2λn
‖x − xn − en‖2

}
,

xn+1 = αn xn + βn(x̄n − en) + γ fn, n ≥ 0,

where { fn} is a bounded sequence in H. Then the sequence {xn} converges weakly to a
minimizer of f .

Proof We can obtain the desired conclusion easily from the proof of Theorems 3.5 and
4.1. ��
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